- interface Abs
Numbers for which the absolute value is defined should implement Abs
.
- abs : Abs ty =>
ty ->
ty
Absolute value
- interface Eq
The Eq interface defines inequality and equality.
- (==) : Eq ty =>
ty ->
ty ->
Bool
- Fixity
- Non-associative, precedence 6
- (/=) : Eq ty =>
ty ->
ty ->
Bool
- Fixity
- Non-associative, precedence 6
- interface Fractional
- (/) : Fractional ty =>
ty ->
ty ->
ty
- Fixity
- Left associative, precedence 9
- recip : Fractional ty =>
ty ->
ty
- interface Integral
- div : Integral ty =>
ty ->
ty ->
ty
- Fixity
- Left associative, precedence 9
- mod : Integral ty =>
ty ->
ty ->
ty
- Fixity
- Left associative, precedence 9
- interface MaxBound
- maxBound : MaxBound b =>
b
The upper bound for the type
- interface MinBound
- minBound : MinBound b =>
b
The lower bound for the type
- interface Neg
The Neg
interface defines operations on numbers which can be negative.
- negate : Neg ty =>
ty ->
ty
The underlying of unary minus. -5
desugars to negate (fromInteger 5)
.
- (-) : Neg ty =>
ty ->
ty ->
ty
- Fixity
- Left associative, precedence 8
- interface Num
The Num interface defines basic numerical arithmetic.
- (+) : Num ty =>
ty ->
ty ->
ty
- Fixity
- Left associative, precedence 8
- (*) : Num ty =>
ty ->
ty ->
ty
- Fixity
- Left associative, precedence 9
- fromInteger : Num ty =>
Integer ->
ty
Conversion from Integer.
- interface Ord
The Ord interface defines comparison operations on ordered data types.
- compare : Ord ty =>
ty ->
ty ->
Ordering
- (<) : Ord ty =>
ty ->
ty ->
Bool
- Fixity
- Non-associative, precedence 6
- (>) : Ord ty =>
ty ->
ty ->
Bool
- Fixity
- Non-associative, precedence 6
- (<=) : Ord ty =>
ty ->
ty ->
Bool
- Fixity
- Non-associative, precedence 6
- (>=) : Ord ty =>
ty ->
ty ->
Bool
- Fixity
- Non-associative, precedence 6
- max : Ord ty =>
ty ->
ty ->
ty
- min : Ord ty =>
ty ->
ty ->
ty
- data Ordering : Type
- LT : Ordering
- EQ : Ordering
- GT : Ordering
- boolOp : (a ->
a ->
Int) ->
a ->
a ->
Bool
- default#/= : Eq ty =>
ty ->
ty ->
Bool
- default#< : Ord ty =>
ty ->
ty ->
Bool
- default#<= : Ord ty =>
ty ->
ty ->
Bool
- default#== : Eq ty =>
ty ->
ty ->
Bool
- default#> : Ord ty =>
ty ->
ty ->
Bool
- default#>= : Ord ty =>
ty ->
ty ->
Bool
- default#max : Ord ty =>
ty ->
ty ->
ty
- default#min : Ord ty =>
ty ->
ty ->
ty
- default#recip : Fractional ty =>
ty ->
ty
- divB16 : Bits16 ->
Bits16 ->
Bits16
- divB32 : Bits32 ->
Bits32 ->
Bits32
- divB64 : Bits64 ->
Bits64 ->
Bits64
- divB8 : Bits8 ->
Bits8 ->
Bits8
- divBigInt : Integer ->
Integer ->
Integer
- divInt : Int ->
Int ->
Int
- intToBool : Int ->
Bool
- modB16 : Bits16 ->
Bits16 ->
Bits16
- modB32 : Bits32 ->
Bits32 ->
Bits32
- modB64 : Bits64 ->
Bits64 ->
Bits64
- modB8 : Bits8 ->
Bits8 ->
Bits8
- modBigInt : Integer ->
Integer ->
Integer
- modInt : Int ->
Int ->
Int
- thenCompare : Ordering ->
Lazy Ordering ->
Ordering
Compose two comparisons into the lexicographic product